
3L Summer School 2008

Data Management and Data Structuring
Peter K Austin
ELAP, Department of Linguistics
SOAS, University of London
24th June 2008

Outline
� Data management

� Properties of data

� Structured data management

� Relational data model

� XML

� Example

We can choose our values/priorities
� Standards & compliance
� Adeptness with tools
� Modelling of phenomena, architecture of data
� Dissemination/publishing
� Preserving
� Ethics, responsibility, protocol
� Range, comprehensiveness
� Intellectual rigour

� Which are priorities?
� Which are dispensible?

Data should be at least:
� explicit & robust

� consistent

� meaningful

� conventional

� adaptable, convertible, machine readable etc

� useful

Data portability
� Bird and Simons 2003:

� (for language documentation) our data needs to have integrity, flexibility, longevity
and broad utility

� complete

� explicit

� documented

� preservable

� transferable

� accessible

� adaptable

� not technology-specific

 2

� (also appropriate, accurate, useful etc!!)

Data management
� the way that data is structured is, in itself, information

� structured data allows:
� usage including manipulation, conversion, derivation
� preservation
� machine readability

Data management system
� a data management system is a system you design for storing files and metadata:

� information about content (including structures)
� relationship between files and pieces of information

� it is not necessarily tied to any particular software, or even a computer

Data modelling
Data modelling is the process of designing your data management system:

� what information do you need to record?
� what are the units of information?
� what are their properties (attributes)
� what are the relationships between the units of information?
� how is all this likely to change in the future?
� what kinds of structures are needed to store these?

Data management
� two well-known ways of storing structured data:

� relational formats
� eXtensible Markup Language (XML)

� these are formats, not softwares or hardwares

� any well-structured and documented data could OK, but:
� less community of usage so less tools, support
� ... (so) errors more likely and harder to diagnose

Directories and filenames
� directories (folders):

� do (only) provide additional naming
� ... and implicit hierarchical relationships
� can encourage bad practice
� cannot represent relationships between information within files
� can be platform specific

Filenames
� a (too) simple management system:

� the information about the recording is captured in the filenames:
1st_int_john_5Aug.wav
market_conv_mj.wav
….

� what does the code ‘int’ mean?

� what information about the recording is missing?

 3

� note: file naming is still important, however!

Structured data management
� example of a simple management system:

� a table in MS Word, Excel, Filemaker etc
� don’t need to pack all information into filenames:

� some information is about the data

� some is about relationships between data

� a separate table should define the codes

� formalise the relationships within the data:
� need unique identifiers

What does this achieve?
� conceptual/intellectual validity
� machine readable
� scalable, searchable, modular
� in fact, portable:

� complete
� explicit
� documented
� preservable
� transferable
� accessible
� adaptable
� not technology-specific

Relational data modelling
� a way of organising data

� a relational database architecture:
� is not a machine
� is not software

� it is composed of:
� multiple tables containing records (rows) of data
� relationships between records of data
� …that’s all

Tables
� each record (row) represents one ‘entity’

� each field (column) represents a type of attribute

� each cell represents one unit of data

FOSF – a special table arrangement
� Field oriented standard format – developed by SIL and used by several

applications programs

� each record begins and ends with a blank line (two carriage returns)

� each field is on a separate line beginning with the field label (always \xx) and
ending with a carriage return

� each cell (unit of data) is the material between space (after the field label) and
carriage return

 4

Example – dictionary
� ‘entry’ table

� we need room for multiple senses:
�but how many?

� solution: use a different table for senses

� each sense can be linked to the entry it belongs to via a reference to the Entry’s
primary key

� ...
� a sense can be linked to the entry it belongs to via a reference to the Entry’s

primary key
� in the new sense table, this is called a foreign key

� this is a one-to-many relationship:
� one entry can have multiple senses
� every sense belongs to exactly one entry

More complicated relationships
� so far, simplest lexical data only

� what if we wanted to relate sentence examples example to every relevant entry?
� an additional table can express the relationships

Relational database software
� all RDB software uses the ‘tables and keys’ model described here:

� MS Access, Oracle, MySQL, Filemaker

� they differ in what they additionally offer:
� user interfaces (MS Access)
� scalability, enforcement of data integrity (Oracle)
� free-cost (MySQL)
� etc

Markup format - XML
� XML came out of SGML - a system for incremental and collaborative “enrichment”

of texts
� XML design principles

� 1. XML shall be straightforwardly usable over the Internet.
� 2. XML shall support a wide variety of applications.
� 3. XML shall be compatible with SGML.
� 4. It shall be easy to write programs which process XML documents.
� 5. The number of optional features in XML is to be kept to the absolute minimum,

ideally zero.
� 6. XML documents should be human-legible and reasonably clear.
� 7. The XML design should be prepared quickly.
� 8. The design of XML shall be formal and concise.
� 9. XML documents shall be easy to create.
� 10. Terseness is of minimal importance.

 5

XML Introduction
� XML is way of creating explicit formal structures using only plain text.

� structures are defined by tags in angle brackets:
 eg: <noun>

� tags are usually in pairs:
� a start/open tag, and an end/close tag:
 the <noun> dog </ noun> chased ...

� but can also be single and closed:
 the dog <pause /> sat down

� tags can have attributes with values :
 the <noun num=“1”> dog </ noun> sat down

� you can name your tags, attributes or values (almost) anything.

� there are some restrictions:
� you can have hierarchies, but not overlaps:
 <a>the<c>cat</c> sat on the mat

 <a>the<c>cat sat</c> on the mat

XML Uses
� XML can be thought of as:

� as a stream (eg: a stream of text)
 and/or
� as a (tree) structure (eg: a dictionary, ontology etc)

� for many applications, XML is how the data is stored underneath:
� it is created automatically (it’s still good to know about!)

� there are good applications that allow you to create XML without typing in plain
text:
� eg: oXygen, XMLSpy
� they also ensure it is well-formed XML

What does marking up as XML do?
� makes your existing structures explicit

� creates machine readable, exchangeable, preservable structured data

� make your stupid decisions explicit

� create machine readable, exchangeable, preservable junk

This is only a part of documentation skills
� consultation and elicitation:

� obtain knowledge about an endangered language and its communities

� recording:
� record the knowledge/performance of the documentation participants

� data management:
� supports: input, store, manipulate, preserve, adapt, share etc

� analysis, dissemination, etc ...

